Send this article to a friend:

September
26
2022

A New Design For Faster Hydrogen Storage
Brian Westenhaus

University of Technology Sydney (UTS) and Queensland University of Technology (QUT) researchers have announced a new design for solid-state hydrogen storage that could significantly reduce charging times.

Hydrogen is gaining significant attention as an efficient way to store ‘green energy’ from renewables such as wind and solar. Compressed gas is the most common form of hydrogen storage, however it can also be stored in a liquid or solid state. Dr Saidul Islam, from the University of Technology Sydney, explained solid hydrogen storage, and in particular metal hydride, is attracting interest because it is safer, more compact, and lower cost than compressed gas or liquid, and it can reversibly absorb and release hydrogen.

Dr Islam commented, “Metal hydride hydrogen storage technology is ideal for onsite hydrogen production from renewable electrolysis. It can store the hydrogen for extended periods and once needed, it can be converted as gas or a form of thermal or electric energy when converted through a fuel cell.”

“Applications include hydrogen compressors, rechargeable batteries, heat pumps and heat storage, isotope separation and hydrogen purification. It can also be used to store hydrogen in space, to be used in satellites and other ‘green’ space technology,” he added.

However, a problem with metal hydride for hydrogen energy storage has been its low thermal conductivity, which leads to slow charging and discharging times.

To address this the researchers developed a new method to improve solid-state hydrogen charging and discharging times. The study: “Design optimization of a magnesium-based metal hydride hydrogen energy storage system,” was recently published in the journal Scientific Reports.

Comparison of hydrogen absorption concentration with different designs. Image Credit: Puchanee Larpruenrudee, School of Mechanical and Mechatronic Engineering, University of Technology Sydney. Click the press release link above for a larger image.

First author Puchanee Larpruenrudee, a PhD candidate in the UTS School of Mechanical and Mechatronic Engineering, said faster heat removal from the solid fuel cell results in faster charging times.

Larpruenrudee explained, “Several internal heat exchangers have been designed for use with metal hydride hydrogen storage. These include straight tubes, helical coil or spiral tubes, U-shape tubes, and fins. Using a helical coil significantly improves heat and mass transfer inside the storage.”

“This is due to the secondary circulation and having more surface area for heat removal from the metal hydride powder to the cooling fluid. Our study further developed a helical coil to increase heat transfer performance,” he concluded.

The researchers developed a semi-cylindrical coil as an internal heat exchanger, which significantly improved heat transfer performance. The hydrogen charging time was reduced by 59% when using the new semi-cylindrical coil compared to a traditional helical coil heat exchanger.

The team is now working on the numerical simulation of the hydrogen desorption process, and continuing to improve absorption times. The semi-cylindrical coil heat exchanger will be further developed for this purpose.

As a goal, the researchers aim to develop a new design for hydrogen energy storage, which will combine other types of heat exchangers. They hope to also work with industry partners to investigate real tank performance based on the new heat exchanger.

Low pressure metal hydride hydrogen storage has potential. Some of the most difficult problems are reduced to more manageable levels. Yet hydrogen is still the smallest atom and is a devil to contain, and likes to get involved with whatever materials are used in its containment, which is why the metal hydride idea works.

No idea offered for storing hydrogen offers a leak proof long term (days or weeks) solution and hydrogen’s properties are just more than a bit scary if allowed to escape into much of a confined space.

Metal hydride might get to safe practicality someday.

Meanwhile, hundreds of millions of years ago nature figured out what to do. Combine that hydrogen with a bit of carbon and presto, food and fuel and a whole lot of life gets going!

By Brian Westenhaus via New Energy and Fuel

 

 



Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the news and views across the emerging field of energy and fuels in our future. You will find the most exciting and useful news, guides and tips for making and saving money in energy and fuel, just how things work or not, where you might want to invest or get involved in a brainstorming session with other readers. 

 

 

oilprice.com

Send this article to a friend: